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Summary of main results

Scaling for exact computation

L. : Subroutine time complexity Memory
Target Application Formulation Naive Ours Naive Ours
. Clifford+T sim. " " n
Robustness of magic [20] Circuit synthesis LP O(|Sn|2™) O(|Sn|n) O(|S,|2™) | O(2™)
Stabilizer extent [24] Clifford+T sim. SOCP O(|S,|2™"n?) O(|Sy.]) O(|S.|2™) | O(2™)
. : Overlap _ . o
Stabilizer fidelity [24] Bound for RoM caleulation O(|Sn|2"n?) O(|Sn]|) O(2™) O(2™)
Circuit simulation Matrix-vector
Pauli decomposition Noise analysis ultilication O(16™) O(4™n) O(4™) O(4™)
Quantum benchmark P




Summary of main results

Scaling for exact computation

Target Application Formulation Sub;}oalg;cflene time COISE:XIW Nailzr/leemoryOurs
Robustness of magic [20) &lflf;dggtﬁlegé LP O(S.127) | o(S.n) | 0(S.2") | 0@
Stabilizer extent [24] Clifford+T sim. SOCP O(|S,|2™"n?) O(|Sn]) O(|S.|2™) | O(2")
Stabilizer fidelity [24] Bound for RoM cacl):fll:’zlc))n O(|Sn|2"n?) O(|Sn]|) O(2™) O(2")
Circuit simulation Matrix-vector
Pauli decomposition Noise analysis e O(16™) O(4™n) O(4"™) O(4"™)
Quantum benchmark multiplication
Run time and memory
Pauli decomposition run time
qubit count n 5 6 7 8 9 1010 Hamaguchi et al.
states |S,| 2.4 x 10° 3.2 x 10° 8.1 x 10! 4.2 x 10%® 4.3 x 10'° 10°; Hantzko et al. (iterative)
size of ARM 379MiB 95GIB  86TiB  &6PiIB  172EB £ '* pantako et v (recutave)
RoM naive time 2 min X X X X Ej 136 Jones
our time 2.3s 7.0 min 1.6h 2.0d X E .
size of A°® | 1011MiB 254GiB 153TiB 153PiB  305EiB -y
SE naive time 7.7 min X X X < e
our time 1.5s 3.8s 12.9s  8.8min 19.2h bz2gao 608 9101112

Number of qubits



GitHub repositories

RoM: https://github.com/guantum-programming/RoM-handbook

RoM-handbook
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This repository provides source code for Robustness of Magic(RoM) calculation, stabilizer fidelity (for mixed
state) calculation, and generating all the pure stabilizer states in Pauli-basis.

Stabilizer extent & fidelity: https://github.com/quantum-programming/stabilizer extent

stabilizer extent

Xk ko koK Xk Xk X %k * >k Xk * %k * %k )k * %k



https://github.com/quantum-programming/RoM-handbook
https://github.com/quantum-programming/stabilizer_extent

Monotones for nonstabilizerness

Definition Formulation
R(p) := mgn{xl p= Zx@-a@}
Robustness of magic " Linear Program (LP)
Howard&Campbell, PRL ('17) B | - AROM bj — TI'(Pj /0)
= n 4zl ] b= T ARM = Ty (Pjoy)

(1)) = mggn{xl ) = Zm>}

Stabilizer extent | Second-Order Cone
BBCCGH, Quantum ('19) { |2 | b= ASE $} bj = (Jl¥) Program (SOCP)

AJS? = (J|94)

= min
reClSnl




Monotones for nonstabilizerness

Definition Formulation
R(p) = mggn{xl p= Zm}
Robustness of magic " Linear Program (LP)
Howard&Campbell, PRL ('17) B | - AROM bj — TI'(Pj ,0)
= n 4zl ] b= T ARM = Ty (Pjoy)

(1)) = mggn{xl ) = Zw»}

Stabilizer extent | Second-Order Cone
BBCCGH, Quantum ('19) { |2 | b= ASE $} bj = (Jl¥) Program (SOCP)

AJS? = (J|94)

= min
reClSnl

Common property: Convex optimization that considers full set of Stabilizer states

Pros: Poly-time solution w.r.t. problem size

2
Cons: Stabilizer state set scales as | S, | = 200"



Key ideas

Q1. The solution expected to be “sparse.”
How to systematically predict contributing bases?

= QObservation: overlap between the target

RoM: Large and small overlaps

— Compute all the overlaps efficiently

SE : Large overlaps

— Use branch-and-bound method



Key ideas

Q1. The solution expected to be “sparse.” Q2. How to improve approx. solution?
How to systematically predict contributing bases? And ensure optimality at the end?
= QObservation: overlap between the target = Column Generation (CG) technique.
RoM: Large and small overlaps Step 1: Initial guess based on overlaps
— Compute all the overlaps efficiently Step 2: lteratively update the guess by CG
SE : Large overlaps . CG for RoM 1145 =
e n =8
— Use branch-and-bound method & . ( | 11.40 \
<Q B i P L
- = 11.35
S 260 | el
= \Convergence i
C}DD 2.58 |
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Overlap calculation for RoM

Weight x; and stabilizer overlaps Tr[po;]

4-qubit random mixed state, p = Z Xi0;
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Overlap calculation for RoM

Weight x; and stabilizer overlaps Tr[po;]

4-qubit random mixed state, p = Z Xi0;

: 1.5 2.0
lized Overlap

po;]

* Observation : large and small overlapping states contribute to R

Overlaps are good metric for dimension reduction

pi b

oM



Overlap calculation for RoM 7

Weight x; and stabilizer overlaps Tr[pc;]

4-qubit random mixed state, p = in"i - Observation : large and small overlapping states contribute to F

Overlaps are good metric for dimension reduction

- Since we have
(Overlap) = Tr[po;] = Z Tr[bijAl.IkaMPi] = (ARMp).
],k
we need AR°Mp for all overlap calculation

1.0 1.5 2.0
Unnormalized Overlap

Tr|po;]

l

pi b



Overlap calculation for RoM

Weight x; and stabilizer overlaps Tr[pc;]

4-qubit random mixed state, p = inffi

P

0,

1

1.5
lized Overlap

2.0

~

* Observation : large and small overlapping states contribute to R

Overlaps are good metric for dimension reduction

- Since we have

(Overlap) = Tr[po;] = Z Tr[bijAl.IkaMPi] = (ARMp).
],k
we need AR°Mp for all overlap calculation

* Naive cost : Time O(| S, | 2"), memory O(| S, |2")

Our cost : Time O(|S,, | n), memory O(2")

pi b

oM



Structure of A matrix 8

+X) [-X) |+Y) |-Y) [+2) |-Z)



Structure of A matrix

Hadamard

+X) [-X) |+Y) |-Y) [+2) |-Z)



Structure of A matrix

Hadamard

+X) [-X) |+Y) |-Y) [+2) |-Z)

Hadamard®?

n=>2
e |




Structure of A matrix 8

Hadamard Hadamard®?

N = 1 n = 2
IX
L Y
17
XX i -
X XY
XZ
X 5
Y YY
YZ
B
+1
+1 B -1

+X) [-X) |+Y) |-Y) |+2) |-Z)
Core decomposition technique

) XN
A matrix is concatenation of Hadamard matrix H = ( _11) with sparsification & sign change



Speed up In in-place tensor-product multiplication

Matrix multiplication by Fast Walsh-Hadamard Transformation (FWHT)

Matrix-vector multiplication of M®" can be done by O(n2"), instead of naive O(4")

] 1 ®3
Example in < 1)

000: 1

001:
010:

011:

100:
101:

110:
111:




Speed up In in-place tensor-product multiplication

Matrix multiplication by Fast Walsh-Hadamard Transformation (FWHT)

Matrix-vector multiplication of M®" can be done by O(n2"), instead of naive O(4")

) X3
. 1 1
Example in < )
1 =1 1st qubit
000 1 =-» 1+0=1
D _
001: 0 > =041 =
010: 1 > 1+1 =2
011: 1 >§» -1+1 =0
100: 0O ~» 0+1=
D
101 1 o 1+O=
110: 1 > 140 =
e



Speed up In in-place tensor-product multiplication

Matrix multiplication by Fast Walsh-Hadamard Transformation (FWHT)

Matrix-vector multiplication of M®" can be done by O(n2"), instead of naive O(4")

] X3
. 1 1
Example in < )

1 =1 1st qubit 2nd
000: 1 >—a 1+0 = —> 142=3
001 O ...... > _O+1=
010: 1T > 141 =2 541 =
011: | » -1+1 =0
100: O ~» 0+41-= -1+1 =0
101 1 > -1+O=
110: 1 =-» 1+40=

et

111: 0 " -0+1 =



Speed up In in-place tensor-product multiplication

Matrix multiplication by Fast Walsh-Hadamard Transformation (FWHT)

Matrix-vector multiplication of M®" can be done by O(n2"), instead of naive O(4")

: ®3
. | |
Example in ( )

1 -1 1st qubit 2nd 3rd
000 1 > 140 = —_— 142=3 —> 3+0=3
001 O ...... > 'O+1 —
010: 1T > 141 =2 541 =
011: | » -1+1 =0
100: 0 >_a O+1 = 141 =0 fecccccaaa- » -0+43 =13
101 1 % > 140 =
110: 1 —» 1+0 =

X

111 - O ...... > 041 =



Speed up In in-place tensor-product multiplication

Matrix multiplication by Fast Walsh-Hadamard Transformation (FWHT)

Matrix-vector multiplication of M®" can be done by O(n2"), instead of naive O(4")

. ®3
. 1 1
Example in ( )

1 -1 1st qubit 2nd 3rd
000 1 =-» 1+40= — 142=3 ———» 3+0=3
001 : O ...... > 'O+1 —
010: 1T > 141 =2 541 =
011: 1 % > -1+1 =0
100: 0 >_a O+1 = 141 =0 fecccccaaa- » -0+43 =13
101: 1 = > 140 =
110: 1 —» 1+0 =

% N

111 0 " _041= additions at each layer.

Time complexity : O(n2")
Space complexity : O(2")



Exponentially fast overlap calculation 10

Core decomposition technique

) XN
A matrix is concatenation of Hadamard matrix H = ( _11> with sparsification & sign change

Matrix multiplication by Fast Walsh-Hadamard Transformation (FWHT)

Matrix-vector multiplication of M®" can be done by O(n2"), instead of naive O(4")



Exponentially fast overlap calculation 10

Core decomposition technique

) XN
A matrix is concatenation of Hadamard matrix H = ( _11> with sparsification & sign change

Matrix multiplication by Fast Walsh-Hadamard Transformation (FWHT)

Matrix-vector multiplication of M®" can be done by O(n2"), instead of naive O(4")

== Since there are | S, | /2" blocks in total, the total time complexity is O(n|S, |)
(naive : O(2" | S, |))



Application to Pauli decomposition

Pauli Decomposition

Input : N-qubit quantum state p

Output : Coefficients {cl-} suchthat p = Z c; P;

P;ePn

11



Application to Pauli decomposition

Pauli Decomposition

Input : N-qubit quantum state p

Output : Coefficients {cl-} suchthat p = Z c; P;

P;ePn

Naive way

Calculate ¢; = Tr[pP;]/2" for every Paul

Cost : O(32N)

11



Application to Pauli decomposition

Pauli Decomposition

Input : N-qubit quantum state p

Output : Coefficients {cl-} suchthat p = Z c; P;

P;ePn

Naive way

Calculate ¢; = Tr[pP;]/2" for every Paul

Cost : O(SZN)

Faster way  Jones ('24)

Use of gray code to suppress computation

Cost: O(8")

11



Application to Pauli decomposition

Pauli Decomposition

Input : N-qubit quantum state p

Output : Coefficients {cl-} suchthat p = Z c; P;
P, ePnN

Hamaguchi, Hamada, NY ('23)

Naive way Even Faster way Hantzko et al. (’23)

Calculate ¢; = Tr[pP;]/2" for every Paul

Step 1: p = ,OZ
Cost : O(SZN) ;

Faster way  Jones ('24) Step 2: = M®Nﬁ where M -

Use of gray code to suppress computation

Cost: O(8") Cost: O(N4™)

—_0 O =



Application to Pauli decomposition

Pauli Decomposition

Input : N-qubit quantum state p
Output : Coefficients {Ci} suchthat p = Z c; P;

P;ePn
1019 .
~— Hamaguchi et al.

107 - ~— Hantzko et al. (iterative)
= 103- ~— Hantzko et al. (recursive)
=
g 107 - —— Romero and Santos-Suarez
% 106 - ~— Jones
105 A

4.
Loty .
10%

1 23456 7 8 9 1011 12
Number of qubits



Naive dimension reduction

Q2. How to systematically improve approx. solution?
And ensure optimality?

Naive idea: increase the column set according to overlap

RoM, n = 7 qubit random mixed state
7.0

\'\ —eo-- Random
: —eo— QOverla
6.0 . =
T Exact RoM
S 50 T
, e
2 40 Random choice
3.0
G Overlap-based
20 77 === ¥ ’ : . . . |
0.2 0.4 0.6 0.8 1.0
le—5

#column size ratio K



Naive dimension reduction

13

Q2. How to systematically improve approx. solution?

And ensure optimality?

Naive idea: increase the column set according to overlap

7.0

RoM, n = 7 qubit random mixed state

Random
—e— Qverlap

----- Exact RoM
Random choice
\ Overlap-based
0.2 0.4 0.6 0.8 1.0

. . le—5
#column size ratio K -

But we still have problems:

(1) No guarantee for exactness

(2) No quantitative way to measure the quality

(3) Convergence from “pretty good” to “exact” is slow

We can remedy all of them using CG



Dual formalism of RoM 14

Primal Problem

(P) miniagnize |||,

subject to Ax =0b

e Columns = stabilizer states.
e |tis difficultto choose columns
that reduces the optimal values.

a1€.x4

o
/ |
\. Q121 + A2x2 + 313

a,y: -

. a s | .Y . ) \_Y_’
1 gnored positive negative
welight welght




Dual formalism of RoM

14

Primal Problem Dual Problem
dualit

(P) mingnize |||,

subject to Ax =0b

Columns = stabilizer states.
It is difficult to choose columns
that reduces the optimal values.

a1€.x4

o
/ |
\. Q121 + A2x2 + 313

a,y: -

. a ae | .Y . ) \_Y_}
1 gnored positive negative
welight welght

(D) max?iJmize b'y

subject to —1< A'y<1

« Limiting columns = Relaxing constraints
e Columns such that the corresponding
constraint is violated should be added.

ajy=—1
aly=+1 i violated constraint




Column generation

Step 1. Construct subset of stabilizers C from overlap info
Step 2. Repeat the following until convergence:

2.1 Solve the constrained optimization problem and obtain dual variable

A\

2.2 Check all the constraints by computing A '$

2.3 Update C

15



Column generation 15

Step 1. Construct subset of stabilizers C from overlap info
Step 2. Repeat the following until convergence:

2.1 Solve the constrained optimization problem and obtain dual variable

A\

2.2 Check all the constraints by computing A '$

2.3 Update C

(a) n="17 n="17 (b) n

1
ol

n==3a

s D
10 Exact

. Solution!

2.107

% 2.106

10’ \\. 2.58 \
N\

® 9
| ; \ 2.56 \

.\o *o—0—0—@ 10 0 —9o—0—0—0—0—0

=
/
o)

2.105

1 + violation count
/
RoM
1 + violation count
/.

/

[
-
o

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 234567 8 910 1 234567 8 910
[teration [teration Iteration Iteration



Stabilizer extent calculation

Main difference: matrix A>F is quite a mess. No hope for FWHT.

X >k >k >k >k >k X >k X >k X >k X >k X Xk X >k X >k

16




Stabilizer extent calculation

Main difference: matrix A>F is quite a mess. No hope for FWHT.

ko Sk koK X >k X >k X >k X >k Xk X >k X >k X >k X >k

- o0 . | | | 8 | |

<01 | | | |

~10 | B
11 H B B

But... the now the small overlapping states are not contributing. Do not need all the overlaps.

* Branch and bound method

16




Stabilizer extent calculation

Contribution 1: Proposal of new canonical form  De Haene and Moore ('03), van den Nest (‘10), Struchalin et al. ('21)

Sp = Ur_oSn.k with
1 o T T
U

)

where
) {Q Q) € IFS “F s an upper triangular matm’x} :

R, {R R € ngk is a reduced column echelon form matrix with rank(R) = k} :

Tr={t | t € F} is a representative of element in the quotient space Fy/Im(R)}

In this notation, the overlap between target |y) and |¢;) € S, ; is

2 N
(6510)] = |57 D (=17 27" ") (Ra + )
x=0




Faster overlap calculation

2™ —1

T T B T
($5l0) = Y (1) @ 7P, Q= ng %)

ol =
[ ]
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Faster overlap calculation

2" —1

(b5l = 3 (1) TP, Q=

=0

Qoo Qo

0
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Faster overlap calculation

2" —1

T T i 9]
. _ _1)* Qx :c :EPaj - QOO Q_O e Co £ L0
(d51) ;_%< )© @i =110 °~lel *=|=
on—1_1 B _
— Z (—1)CE QEZE a_j(PQ:U | ( 1)QOO‘|‘Q0 jZOCOPQj_Fl) Cost: 0(2n_1n)
=0
on—1_1




Faster overlap calculation 18

2" —1 : : - o
T T T & i ke
) = (—1)" “%i¢ TP, _ |— . .
<¢J‘¢> :;) Q -O Q_ _C_ _a’;-
2n_1—1 T A T T
= Y (mlenete (PQ,,L, - (—1)@oo+Qs %COP%H) Cost: 02" n)
7=0
2! T A T
— Z (—1)% Q%€ Tp. In-place calculation, Time complexity O(2"1n?)
7=0
on—1_1 -
_ T A_ _T _— —
max [(¢;]¢)| =max max | ¥ (=1)7 9Ti® TPyl Time complexity Q2" D2) ~ O(| S, |)
J Q,E QOO?QO)CO F—0)

Some branches do not need explicit calculation

(Branch and bound)



Summary and Future directions

RoM for 8 qubits, SE for 9 qubits

qubit count n 5 6 7 8 9

states |S,,| 2.4 x 10° 3.2 x 10° 8.1 x 1019 4.2 x 10% 4.3 x 10%

size of AZM 379MiB  95GiB 86 TiB  86PiB  172EiB

RoM naive time 2 min X X X X
our time 2.3s 7.0 min 1.6h 2.0d X
size of A® | 1011MiB 254GiB 153TiB 153PiB  305EiB

SE naive time 7.7 min X X X X
our time 1.5s 3.8s 12.9s 8.8 min 19.2h

Future directions

- Application to extent-based monotone for mixed states? (e.g. dyadic negativity)
- Incorporate symmetry in stabilizer extent calculation

- Develop integrated library?

19



