Faster Computation of magic monotones

Based on arXiv:2311.01362, arXiv:2406.16673

Nobuyuki Yoshioka
The University of Tokyo
2024.11.18

AQIS 2024 poster prize winners

Hiroki Kou Hamaguchi Hamada

Summary of main results

Scaling for exact computation

Target	Application	Formulation	Subroutine time complexity		Memory	
Target	Application		Naive	Ours	Naive	Ours
Robustness of magic [20]	Clifford+T sim.	LP	$\mathcal{O}(\mathcal{S}_n 2^n)$	$\mathcal{O}(\mathcal{S}_n n)$	$\mathcal{O}(\mathcal{S}_n 2^n)$	$\mathcal{O}(2^n)$
	Circuit synthesis				(1)	
Stabilizer extent [24]	Clifford+T sim.	SOCP	$\mid \mathcal{O}(\mathcal{S}_n 2^nn^2) \mid$	$\mathcal{O}(\mathcal{S}_n)$	$\mathcal{O}(\mathcal{S}_n 2^n)$	$\mathcal{O}(2^n)$
Stabilizer fidelity [24]	Bound for RoM	Overlap	$igg _{\mathcal{O}\left(\mathcal{S}_n 2^nn^2 ight)}$	$\mathcal{O}(\mathcal{S}_n)$	$\mathcal{O}(2^n)$	$\mathcal{O}(2^n)$
	Dound for How	calculation	$\left(O_n ^2 n \right)$	$\mathcal{O}(\mathcal{O}_n)$		
	Circuit simulation	Matrix-vector				
Pauli decomposition	Noise analysis	multiplication	$\mathcal{O}(16^n)$	$\mathcal{O}(4^n n)$	$\mathcal{O}(4^n)$	$\mathcal{O}(4^n)$
	Quantum benchmark					

Summary of main results

Scaling for exact computation

Target	Application	Formulation	Subroutine time complexity		Memory	
Target			Naive	Ours	Naive	Ours
Robustness of magic [20]	Clifford+T sim. Circuit synthesis	LP	$\mathcal{O}(\mathcal{S}_n 2^n)$	$\mathcal{O}(\mathcal{S}_n n)$	$\mathcal{O}(\mathcal{S}_n 2^n)$	$\mathcal{O}(2^n)$
Stabilizer extent [24]	Clifford+T sim.	SOCP	$\mathcal{O}(\mathcal{S}_n 2^nn^2)$	$\mathcal{O}(\mathcal{S}_n)$	$\mathcal{O}(\mathcal{S}_n 2^n)$	$\mathcal{O}(2^n)$
Stabilizer fidelity [24]	Bound for RoM	Overlap calculation	$\mathcal{O}ig(\mathcal{S}_n 2^nn^2ig)$	$\mathcal{O}(\mathcal{S}_n)$	$\mathcal{O}(2^n)$	$\mathcal{O}(2^n)$
Pauli decomposition	Circuit simulation Noise analysis Quantum benchmark	Matrix-vector multiplication	$\mathcal{O}(16^n)$	$\mathcal{O}(4^n n)$	$\mathcal{O}(4^n)$	$\mathcal{O}(4^n)$

Run time and memory

qu	bit count n	5	6	7	8	9
S	states $ \mathcal{S}_n $	2.4×10^{6}	3.2×10^{8}	8.1×10^{10}	4.2×10^{13}	4.3×10^{16}
	size of $A_n^{ m RoM}$	379 M iB	95 GiB	86 TiB	86 PiB	172 EiB
RoM	naive time	2min	×	×	×	×
	our time	2.3s	$7.0\mathrm{min}$	1.6h	2.0d	×
	size of $A_n^{ m SE}$	1011 MiB	$254\mathrm{GiB}$	153 TiB	153 PiB	305 EiB
SE	naive time	$7.7\mathrm{min}$	×	×	×	×
	our time	1.5s	3.8s	$12.9\mathrm{s}$	8.8 min	19.2h

Pauli decomposition run time

RoM: https://github.com/quantum-programming/RoM-handbook

Stabilizer extent & fidelity: https://github.com/quantum-programming/stabilizer extent

	Definition	Formulation	
Robustness of magic Howard&Campbell, PRL ('17)	$\mathcal{R}(\rho) := \min_{x} \left\{ \ x\ _{1} \middle \rho = \sum_{i} x_{i} \sigma_{i} \right\}$ $= \min_{x \in \mathbb{R}^{ \mathcal{S}_{n} }} \left\{ \ x\ _{1} \middle b = A^{\text{RoM}} x \right\} \begin{array}{l} b_{j} = \text{Tr}(P_{j} \rho) \\ A_{j,i}^{\text{RoM}} = \text{Tr}(P_{j} \sigma_{i}) \end{array}$	Linear Program (LP)	
Stabilizer extent BBCCGH, Quantum ('19)	$\xi(\psi\rangle) = \min_{x} \left\{ x _{1} \middle \psi\rangle = \sum_{i} x_{i} \phi_{i}\rangle \right\}$ $= \min_{x \in \mathbb{C}^{ S_{n} }} \left\{ x _{1}^{2} \middle b = A^{\operatorname{SE}}x \right\} \begin{array}{c} b_{j} = \langle j \psi\rangle \\ A_{j,i}^{\operatorname{SE}} = \langle j \phi_{i}\rangle \end{array}$	Second-Order Cone Program (SOCP)	

	Definition	Formulation
Robustness of magic Howard&Campbell, PRL ('17)	$\mathcal{R}(\rho) := \min_{x} \left\{ \ x\ _{1} \middle \rho = \sum_{i} x_{i} \sigma_{i} \right\}$ $= \min_{x \in \mathbb{R}^{ \mathcal{S}_{n} }} \left\{ \ x\ _{1} \middle b = A^{\text{RoM}} x \right\} \begin{array}{l} b_{j} = \text{Tr}(P_{j} \rho) \\ A_{j,i}^{\text{RoM}} = \text{Tr}(P_{j} \sigma_{i}) \end{array}$	Linear Program (LP)
Stabilizer extent BBCCGH, Quantum ('19)	$\begin{aligned} \left \xi(\psi\rangle) &= \min_{x} \left\{ x _{1} \middle \psi\rangle = \sum_{i} x_{i} \phi_{i}\rangle \right\} \\ &= \min_{x \in \mathbb{C}^{ S_{n} }} \left\{ x _{1}^{2} \middle b = A^{\operatorname{SE}}x \right\} \begin{array}{c} b_{j} &= \langle j \psi\rangle \\ A_{j,i}^{\operatorname{SE}} &= \langle j \phi_{i}\rangle \end{array} \end{aligned}$	Second-Order Cone Program (SOCP)

Common property: Convex optimization that considers full set of Stabilizer states

Pros: Poly-time solution w.r.t. problem size

Cons: Stabilizer state set scales as $|S_n| = 2^{O(n^2)}$

Q1. The solution expected to be "sparse."
How to systematically predict contributing bases?

Observation: overlap between the target

RoM: Large and small overlaps

→ Compute all the overlaps efficiently

SE: Large overlaps

→ Use branch-and-bound method

Key ideas

Q1. The solution expected to be "sparse." How to systematically predict contributing bases?

Observation: overlap between the target

RoM: Large and small overlaps

→ Compute all the overlaps efficiently

SE: Large overlaps

→ Use branch-and-bound method

Q2. How to improve approx. solution? And ensure optimality at the end?

Column Generation (CG) technique.

Step 1: Initial guess based on overlaps

Step 2: Iteratively update the guess by CG

Weight x_i and stabilizer overlaps $\text{Tr}[\rho\sigma_i]$

4-qubit random mixed state, $\rho = \sum_{i} x_i \sigma_i$

Weight x_i and stabilizer overlaps $\text{Tr}[\rho\sigma_i]$

4-qubit random mixed state, $\rho = \sum x_i \sigma_i$

Observation: large and small overlapping states contribute to RoM
 Overlaps are good metric for dimension reduction

Weight x_i and stabilizer overlaps $\mathrm{Tr}[\rho\sigma_i]$

4-qubit random mixed state, $\rho = \sum x_i \sigma_i$

- Observation: large and small overlapping states contribute to RoM
 Overlaps are good metric for dimension reduction
- Since we have

(Overlap) =
$$\text{Tr}[\rho\sigma_i] = \sum_{j,k} \text{Tr}[b_j P_j A_{i,k}^{\text{RoM}} P_i] = (A^{\text{RoM}}b)_i$$

we need $A^{\mathrm{RoM}}b$ for all overlap calculation

Weight x_i and stabilizer overlaps $\mathrm{Tr}[\rho\sigma_i]$

4-qubit random mixed state, $\rho = \sum x_i \sigma_i$

- Observation: large and small overlapping states contribute to RoM
 Overlaps are good metric for dimension reduction
- Since we have

(Overlap) =
$$\text{Tr}[\rho\sigma_i] = \sum_{j,k} \text{Tr}[b_j P_j A_{i,k}^{\text{RoM}} P_i] = (A^{\text{RoM}}b)_i$$

we need $A^{\mathrm{RoM}}b$ for all overlap calculation

• Naive cost : Time $O(|S_n|2^n)$, memory $O(|S_n|2^n)$

Our cost : Time $O(|S_n|n)$, memory $O(2^n)$

Structure of A matrix

Structure of A matrix

Core decomposition technique

A matrix is concatenation of Hadamard matrix $H = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{\otimes n}$ with sparsification & sign change

```
Example in \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{\otimes 3}
                                000:
                                001:
                                010:
                                011:
                                 100:
                                101:
                                 110:
                                111:
```

```
Example in \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{\otimes 3}
                                                 1st qubit
                              000: 1 + 0 = 1
001: 0 -0 + 1 = 1
                              010: 1 + 1 = 2
011: 1 -1 + 1 = 0
                              100: 0 \rightarrow 0+1 = 1
101: 1 \rightarrow -1+0 = -1
                                           110:
```

```
Example in \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{\otimes 3} 1st qubit
                              000: 1 + 0 = 1 + 2 = 3

001: 0 -0+1 = 1

010: 1 + 1 = 2 -2+1 = -1

011: 1 -1+1 = 0
                              100: 0 \rightarrow 0+1 = 1 -1+1 = 0
101: 1 \rightarrow -1+0 = -1
                                           110:
```


Core decomposition technique

A matrix is concatenation of Hadamard matrix $H=\begin{pmatrix}1&1\\1&-1\end{pmatrix}^{\otimes n}$ with sparsification & sign change

Matrix multiplication by Fast Walsh-Hadamard Transformation (FWHT)

Core decomposition technique

A matrix is concatenation of Hadamard matrix $H=\begin{pmatrix}1&1\\1&-1\end{pmatrix}^{\otimes n}$ with sparsification & sign change

Matrix multiplication by Fast Walsh-Hadamard Transformation (FWHT)

Matrix-vector multiplication of $M^{\otimes n}$ can be done by $O(n2^n)$, instead of naive $O(4^n)$

Since there are $|S_n|/2^n$ blocks in total, the total time complexity is $O(n|S_n|)$

(naive : $O(2^n |S_n|)$)

Input : N-qubit quantum state ρ

Output : Coefficients $\{c_i\}$ such that $\rho = \sum_{P_i \in \mathcal{P}_N} c_i P_i$

Input : N-qubit quantum state ρ

Output : Coefficients $\{c_i\}$ such that $\ \rho = \sum_{P_i \in \mathcal{P}_N} c_i P_i$

Naive way

Calculate $c_i = {\rm Tr}[\rho P_i]/2^N$ for every Pauli

 $\mathsf{Cost} : \ O(32^N)$

Input : N-qubit quantum state ρ

Output : Coefficients $\{c_i\}$ such that $\ \rho = \sum_{P_i \in \mathcal{P}_N} c_i P_i$

Naive way

Calculate $c_i = {\rm Tr}[\rho P_i]/2^N$ for every Pauli

 $\operatorname{Cost}:\ O(32^N)$

Faster way Jones ('24)

Use of gray code to suppress computation

Cost: $O(8^N)$

Input : N-qubit quantum state ρ

Output : Coefficients $\{c_i\}$ such that $\ \rho = \sum_{P_i \in \mathcal{P}_N} c_i P_i$

Naive way

Calculate $c_i = {\rm Tr}[\rho P_i]/2^N$ for every Pauli

 $\mathsf{Cost}:\ O(32^N)$

Faster way Jones ('24)

Use of gray code to suppress computation

Cost: $O(8^N)$

Even Faster way

Hamaguchi, Hamada, **NY** ('23) Hantzko et al. ('23)

Step 1:
$$\vec{
ho} = egin{bmatrix} \vdots \\
ho_{ij} \\ \vdots \end{bmatrix}_{ij}$$

Step 2:
$$\vec{c} = M^{\otimes N} \vec{\rho}$$
 where $M := \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & i & -i & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$

 $\operatorname{Cost}:\ O(N4^N)$

Input : N-qubit quantum state ρ

Output : Coefficients $\{c_i\}$ such that $\ \rho = \sum_{P_i \in \mathcal{P}_N} c_i P_i$

Q2. How to systematically improve approx. solution? And ensure optimality?

Naive idea: increase the column set according to overlap

Q2. How to systematically improve approx. solution? And ensure optimality?

Naive idea: increase the column set according to overlap

But we still have problems:

- (1) No guarantee for exactness
- (2) No quantitative way to measure the quality
- (3) Convergence from "pretty good" to "exact" is slow

We can remedy all of them using CG

Primal Problem

(P) minimize
$$\|\boldsymbol{x}\|_1$$
 subject to $A\boldsymbol{x} = \boldsymbol{b}$

- Columns = stabilizer states.
- It is difficult to choose columns that reduces the optimal values.

Primal Problem

(P) minimize $\|\boldsymbol{x}\|_1$ subject to $A\boldsymbol{x} = \boldsymbol{b}$

- Columns = stabilizer states.
- It is difficult to choose columns that reduces the optimal values.

strong Dual Problem duality

(D) maximize $\boldsymbol{b}^{\top} \boldsymbol{y}$

subject to
$$-\mathbf{1} \leq A^{\top} y \leq \mathbf{1}$$

- Limiting columns = Relaxing constraints
- Columns such that the corresponding constraint is violated should be added.

Column generation

- Step 1. Construct subset of stabilizers C from overlap info
- Step 2. Repeat the following until convergence:
 - 2.1 Solve the constrained optimization problem and obtain dual variable \hat{y}
 - 2.2 Check all the constraints by computing $A^{\mathsf{T}}\hat{y}$
 - 2.3 Update C

Column generation

- Step 1. Construct subset of stabilizers C from overlap info
- Step 2. Repeat the following until convergence:
 - 2.1 Solve the constrained optimization problem and obtain dual variable \hat{y}
 - 2.2 Check all the constraints by computing $A^{\mathsf{T}}\hat{y}$
 - 2.3 Update C

Main difference: matrix $A^{\rm SE}$ is quite a mess. No hope for FWHT.

Main difference: matrix $A^{\rm SE}$ is quite a mess. No hope for FWHT.

But... the now the small overlapping states are not contributing. Do not need all the overlaps.

Branch and bound method

Stabilizer extent calculation

Contribution 1: Proposal of new canonical form De Haene and Moore ('03), van den Nest ('10), Struchalin et al. ('21)

$$\mathcal{S}_n = \cup_{k=0}^n \mathcal{S}_{n,k}$$
 with

$$S_{n,k} \coloneqq \left\{ \frac{1}{2^{k/2}} \sum_{x=0}^{2^k - 1} (-1)^{x^\top Q x} i^{c^\top x} | Rx + t \rangle \middle| Q \in \mathcal{Q}_k, c \in \mathbb{F}_2^k, R \in \mathcal{R}_k, t \in \mathcal{T}_R \right\}$$

where

$$Q_k := \{Q \mid Q \in \mathbb{F}_2^{k \times k} \text{ is an upper triangular matrix} \},$$

$$\mathcal{R}_k \coloneqq \left\{ R \mid R \in \mathbb{F}_2^{n \times k} \text{ is a reduced column echelon form matrix with } \operatorname{rank}(R) = k \right\},$$

$$\mathcal{T}_R \coloneqq \left\{ t \mid t \in \mathbb{F}_2^n \text{ is a representative of element in the quotient space } \mathbb{F}_2^n / \operatorname{Im}(R) \right\}$$

In this notation, the overlap between target $|\psi\rangle$ and $|\phi_j\rangle\in S_{n,k}$ is

$$\left| \langle \phi_j | \psi \rangle \right| = \left| \frac{1}{2^{k/2}} \sum_{x=0}^{2^k - 1} \left((-1)^{x^T Q x} i^{c^T x} \right)^{\dagger} \langle R x + t | \psi \rangle \right|$$

$$\langle \phi_j | \psi \rangle = \sum_{x=0}^{2^n - 1} (-1)^{x^\top Q x} i^{c^\top x} P_x \qquad Q = \begin{bmatrix} Q_{00} & Q_0^\top \\ 0 & \overline{Q} \end{bmatrix} \quad c = \begin{bmatrix} c_0 \\ \overline{c} \end{bmatrix} \quad x = \begin{bmatrix} x_0 \\ \overline{x} \end{bmatrix}$$

$$\langle \phi_j | \psi \rangle = \sum_{x=0}^{2^n - 1} (-1)^{x^\top Q x} i^{c^\top x} P_x \qquad Q = \begin{bmatrix} Q_{00} & Q_0^\top \\ 0 & \overline{Q} \end{bmatrix} \quad c = \begin{bmatrix} c_0 \\ \overline{c} \end{bmatrix} \quad x = \begin{bmatrix} x_0 \\ \overline{x} \end{bmatrix}$$

$$=\sum_{\bar{x}=0}^{2^{n-1}-1}(-1)^{\bar{x}^{\top}\bar{Q}\bar{x}}i^{\bar{c}^{\top}\bar{x}}\left(P_{2\bar{x}}+(-1)^{Q_{00}+Q_{0}^{\top}\bar{x}}i^{c_{0}}P_{2\bar{x}+1}\right) \quad \text{Cost: } O(2^{n-1}n)$$

$$\langle \phi_j | \psi \rangle = \sum_{x=0}^{2^n - 1} (-1)^{x^\top Q x} i^{c^\top x} P_x \qquad Q = \begin{bmatrix} Q_{00} & Q_0^\top \\ 0 & \overline{Q} \end{bmatrix} \quad c = \begin{bmatrix} c_0 \\ \overline{c} \end{bmatrix} \quad x = \begin{bmatrix} x_0 \\ \overline{x} \end{bmatrix}$$

$$=\sum_{\bar{x}=0}^{2^{n-1}-1}(-1)^{\bar{x}^{\top}\bar{Q}\bar{x}}i^{\bar{c}^{\top}\bar{x}}\left(P_{2\bar{x}}+(-1)^{Q_{00}+Q_{0}^{\top}\bar{x}}i^{c_{0}}P_{2\bar{x}+1}\right) \quad \text{Cost: } O(2^{n-1}n)$$

$$=\sum_{ar{x}=0}^{2^{n-1}-1}(-1)^{ar{x}^{ op}ar{Q}ar{x}}i^{ar{c}^{ op}ar{x}}ar{P}_{ar{x}}$$
 In-place calculation, Time complexity $O(2^nn^2)$

$$\langle \phi_j | \psi \rangle = \sum_{x=0}^{2^n - 1} (-1)^{x^\top Q x} i^{c^\top x} P_x \qquad Q = \begin{bmatrix} Q_{00} & Q_0^\top \\ 0 & \overline{Q} \end{bmatrix} \quad c = \begin{bmatrix} c_0 \\ \overline{c} \end{bmatrix} \quad x = \begin{bmatrix} x_0 \\ \overline{x} \end{bmatrix}$$

$$=\sum_{\bar{x}=0}^{2^{n-1}-1}(-1)^{\bar{x}^{\top}\bar{Q}\bar{x}}i^{\bar{c}^{\top}\bar{x}}\left(P_{2\bar{x}}+(-1)^{Q_{00}+Q_{0}^{\top}\bar{x}}i^{c_{0}}P_{2\bar{x}+1}\right)\quad\text{Cost: }O(2^{n-1}n)$$

$$=\sum_{\bar{x}=0}^{2^{n-1}-1}(-1)^{\bar{x}^\top\bar{Q}\bar{x}}i^{\bar{c}^\top\bar{x}}\bar{P}_{\bar{x}}$$
 In-place calculation, Time complexity $O(2^nn^2)$

$$\max_{j} |\langle \phi_{j} | \psi \rangle| = \max_{\bar{Q}, \bar{c}} \max_{Q_{00}, Q_{0}, c_{0}} \left| \sum_{\bar{x}=0}^{2^{n-1}-1} (-1)^{\bar{x}^{\top} \bar{Q} \bar{x}} i^{\bar{c}^{\top} \bar{x}} \bar{P}_{\bar{x}} \right| \quad \text{Time complexity } O(2^{n+n(n+1)/2}) \sim O(|S_{n}|)$$

Some branches do not need explicit calculation (Branch and bound)

Summary and Future directions

RoM for 8 qubits, SE for 9 qubits

qu	bit count n	5	6	7	8	9
S	states $ \mathcal{S}_n $	2.4×10^{6}	3.2×10^{8}	8.1×10^{10}	4.2×10^{13}	4.3×10^{16}
	size of $A_n^{ m RoM}$	379 MiB	95 GiB	86 TiB	86 PiB	172 EiB
RoM	naive time	2min	×	×	×	×
	our time	2.3s	$7.0\mathrm{min}$	1.6h	2.0d	×
SE	size of $A_n^{ m SE}$	1011 MiB	$254\mathrm{GiB}$	153 TiB	153 PiB	305 EiB
	naive time	$7.7\mathrm{min}$	×	×	×	×
	our time	1.5s	3.8s	$12.9\mathrm{s}$	8.8 min	19.2h

Future directions

- Application to extent-based monotone for mixed states? (e.g. dyadic negativity)
- Incorporate symmetry in stabilizer extent calculation
- Develop integrated library?